Plastic Deformation of Nanostructured Materials

A. M. Glezer, E. V. Kozlov, N. A. Koneva N. A. Popova, and I. A. Kurzina

Contents

Introduction		
1.	Stages of plastic deformation of poly4crystalline materials	1
1.1.	Introduction. Description of the problem	1
1.2.	Main stages of plastic deformation of polycrystals at	
	the mesolevel	2
1.3.	Determination of the plastic deformation stages in FCC	
	metals and solid solutions	3
1.4.	Some historical data for the determination of the stages	
	II-IV of plastic deformation in polycrystalline materials	4
1.5.	Individual stages of plastic deformation in the BCC	
	metals and alloys	5
1.6.	Storage of dislocations, internal stress fields and evolution	_
	of the dislocation structure	8
1.7.	Evolution of the substructure – the basics of the physics of	
	stages in gliding of total dislocations	14
1.8.	Transition to twinning and deformation martensitic	
	transformation as an important factor of formation of stages	
	of work hardening	17
1.9.	Localisation of deformation – another reason for the formation	17
1 10	of new stages	17
1.10.	Factors complicating the characteristics of the deformation	1.0
1 11	stages in meso-polycrystals	19
1.11.		20
1 12	plastic deformation Changes of the atmosture of the polyemystelline aggregate and	20
1.12.	Changes of the structure of the polycrystalline aggregate and the pattern of the deformation stages with a decrease of the	
	average grain size	23
1.13.	The main factors determining the stages of deformation and	23
1.13.	the value of the work hardening coefficient in the microrange	25
1 14	Problem of determination of the grain size at the microlevel	28
	Identification of plastic deformation stages at the microlevel	29
1.16.		2)
1.10.	different nanograin sizes	31
1.17.		51
1.1/.	with different grain sizes	32
	min directin Stant Sizes	12

	stages of deformation of polycrystals with nanograins Effect of different hardening mechanisms on the flow stress	37
1.19.	and the form of the $\sigma = f(\epsilon)$ dependence	38
1 20	Basic pattern of work hardening of nanocrystals	43
	Effect of the grain size on the parameters of plastic	,,,
1.21.	deformation stages	44
2.	The structure and mechanical properties of nanocrystals	50
2.1.	Introduction	50
2.2.	Classification of polycrystals on the basis of the grain size	5
2.3.	Methods for producing ultrafine-grained and nanograin	
	polycrystalline materials	53
2.4.	The structure of polycrystalline materials	54
2.5.	Triple junctions in grains	58
2.6.	Models of polycrystalline grains at the meso- and microlevel	68
2.7.	The structure of individual nanograins	77
2.8.	Special features of the structure of the nanopolycrystalline	0.0
2.0	aggregate as a consequence of high plastic strains	80
2.9.	Dependence of the dislocation density on the grain size and	0.2
2 10	the problem of fine grains without dislocations	82 85
	Critical size ranges of the grains and areas with grains	0.5
2.11.		86
2 12	size range The mechanisms of implementation of the Hall-Petch relation	
2.12.	the mesolevel	86
2 13	Dependence of coefficient k on the grain size in the	00
2.13.	Hall–Petch relation	90
2 14	Problem of the transition of coefficient k to negative value.	,,,
2,17.	The first critical grain size	95
2.5.	Mechanisms of realisation of the Hall–Petch relation at	
2.0.	the microlevel	101
2 16	Mechanisms providing contribution to the grain boundary	
2.10.	sliding process	105
2.17.		
	required for the formation of this zone	105
2.18.	Contact stresses. Conventional and accommodation sliding	109
	Conclusion	114
3.	Main components of the dislocation structure and the role	
٥.	of the dimensional factor	120
3.1.	Problem of classification of dislocation structure components	120
	Components of the dislocation structure	120
J. I. I.	Components of the distoration surveyor	