

ARTIFICIAL INTELLIGENCE

An Introduction for the Inquisitive Reader

Robert H. Chen Chelsea Chen

Contents

Preface, xi

PART I The Arrival of AI in the Human World

Chapter 1 ■ Game-Playing Machines	
THE IBM 701	4
GAME-PLAYING MACHINES	6
IBM DEEP BLUE	6
GOOGLE ALPHAGO	8
IBM PROJECT DEBATER	13
TORONTO/DEEPMIND VIDEO GAMER	16
IBM WATSONQA	17
CARNEGIE-MELLON TEXAS HOLD'EM PLAYER	
LIBRATUS	18
CHAPTER 2 • Working Machines	21
IBM PHYSICIAN'S ASSISTANT	21
NYU CANCER DIAGNOSTIC	24
CORONAVIRUS ATTACKERS	24
SELF-DRIVING CARS	26
ASSEMBLY LINE QUALITY CONTROL	28
COMPUTER PROGRAMMERS	29
DIGITAL ASSISTANTS	30
EXOPLANET ASTRONOMER	30

CHAPTER 3 • Intelligence	35
CHAPTER 4 • The AI Singularity	45
PART II The Artificial Intelligence Infrastructure	
Chapter 5 • Hardware	53
THE COMPUTER	57
Chapter 6 ■ Software	75
CHAPTER 7 ■ Computer Communications	79
CHAPTER 8 • Open Source Software	87
PART III From Top to Bottom	
CHAPTER 9 Top-Down Artificial Intelligence	97
JAPAN'S FIFTH GENERATION	107
LOGICISM VERSUS INTUITIONISM	108
CHAPTER 10 • Bottom-Up Artificial Intelligence	111
AUTONOMOUS VEHICLES	115
CHAPTER 11 • Machine Learning Modeling	119
CHAPTER 12 • Markov Chain Monte Carlo Simulation	125
MONTE CARLO AND THE ATOMIC BOMB	126
PART IV Structure and Operation	
TAKI IV Structure and Operation	
CHAPTER 13 • Artificial Neural Networks	139

CHAPTER 14 • Pattern Recognition	145
CHAPTER 15 • Parameterization	149
CHAPTER 16 ■ Gradient Descent	157
CHAPTER 17 Backpropagation	163
CHAPTER 18 • Convolutional Neural Networks	169
PART V Progression	
CHAPTER 19 ■ The Cross-Entropy Cost Function	177
CHAPTER 20 • Hyperparameterization	183
CHAPTER 21 ■ Big Data	187
CHAPTER 22 • Massively Parallel Processing	193
QUANTUM COMPUTING ARTIFICIAL NEURAL NETWORKS	198
PART VI Powers of Prediction	
CHAPTER 23 • Predictive Analytics	203
CHAPTER 24 Restricted Boltzmann Machine	209
CHAPTER 25 • Latent Factors in Collaborative Filtering	217
EXOMOON DISCOVERY	220

viii Contents

Chapter 26 • Support Vector Machines	223
COMPUTATIONAL CHEMISTRY	226
CHAPTER 27 • Reinforcement Learning	231
CHAPTER 28 • AlphaGo and AlphaStar	237
VIDEO GAMER	240
CHAPTER 29 ■ Game Theory	243
IMPERFECT INFORMATION	247
PART VII Natural Language Processing	
CHAPTER 30 ■ Top-Down Speech Recognition	255
CHAPTER 31 • Bottom-Up Speech Recognition	261
CORONAVIRUS VACCINE	274
CHAPTER 32 ■ Speech Synthesis	279
PART VIII The Robotworld	
CHAPTER 33 ■ Robots at Work	289
PENETRATING THE FOG OF WAR	289
INDUSTRIAL ROBOTS	294
SEMICONDUCTOR CHIP MANUFACTURING	296
ROBOT FARM WORKERS	297
THE ROBOT HEALTHCARE PROVIDER	298
THE ROBOT CODER	299
CHAPTER 34 ■ The Robot Millennial	301
THE ROBOT COMPUTER SCIENTIST	304
THE ROBOT SCIENTIST	304

CHAPTER 35 ■ The Robot Future	305
ROBOTS AT WAR	306
THE ROBOT EINSTEIN	308

AFTERWORD, 311 ABOUT THE AUTHOR, 317 APPENDIX: THE EULER-LAGRANGE EQUATION, 319 BIBLIOGRAPHY, 331

INDEX, 335

Artificial Intelligence: An Introduction for the Inquisitive Reader guides readers through the history and development of AI, from its early mathematical beginnings through to the exciting possibilities of its potential future applications. To make this journey as accessible as possible, the authors build their narrative around accounts of some of the more popular and well-known demonstrations of artificial intelligence including Deep Blue, AlphaGo and even Texas Hold'em, followed by their historical background, so that AI can be seen as a natural development of mathematics and computer science. As the book moves forward, more technical descriptions are presented at a pace that should be suitable for all levels of readers, gradually building a broad and reasonably deep understanding and appreciation for the basic mathematics, physics, and computer science that is rapidly developing artificial intelligence as it is today.

Features

- Only mathematical prerequisite is an elementary knowledge of calculus.
- Accessible to anyone with an interest in Al and its mathematics and computer science history.
- Suitable as a supplementary reading for a course in AI or the History of Mathematics and Computer Science in regard to artificial intelligence.

MATHEMATICS

